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Abstract. We present a method for the calculation of the scattering of light by a periodic two-
dimensional array of spherical particles adsorbed on a uniform dielectric slab. Multiple
scattering of light between the particles of the overlayer and between the overlayer and the
substrate is taken fully into account, The method is applied to light scattering from a square
lattice of gold particles on a sapphire substrate for which experimental data arc available.
The agreement between theory and experiment is reasonably good.

1. Introduction

The study of optical properties of inhomogeneous films has attracted special interest in
the last few years for physical as well as for technological reasons. The Raman scattering
by molecules adsorbed on rough metal surfaces for instance has drawn much attention
due to the extremely large enhancement of the scattering cross section. The under-
standing of the origin of the surface-enhanced Raman scattering provided the impetus
for a number of optical investigations of rough surfaces [1-4]. Thin films consisting of
small metallic particles embedded in a dielectric host material have remarkabie optical
properties which might be useful for specific technological purposes, e.g. as coatings for
solar energy absorbers [5]. In general, granular or discontinuous metal films can exhibit
optical properties which are strikingly different from the bulk behaviour and have been
for many yearsthe active target of experimental investigation [6, 7]. Recently, Craighead
and Niklasson [8] and Niklasson and Craighead [9] fabricated two-dimensional square
arrays of gold particles having diameters of 20-35 nm with a spacing of 50 nm on thick
sapphire substrates and measured the optical transmission through this structure.
From a theoretical point of view, the problem of light scattering by a spherical object
situated in a homogeneous medium has been solved rigorously early in this century in
terms of classical electromagnetic theory by Mie [10] and Debye [11]. In this treatment,
the spheres are assumed to be large enough for the macroscopic dielectric theory to be
applicable, with no other limitation on their size. When the wavelength of light is
much larger than the dimension of the particles and the distance between them, the
electrostatic approximation can be employed and the optical properties of the metal
particles can be characterized by an effective medium, as described by Maxwell Garnett
[12] for spherical particles and by David [13] for spheroidal particles. Calculations
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dealing with certain aspects of the optical properties of inhomogeneous systems con-
sisting of metallic spheres of radius 10 nm or so in a dielectric host have been published
by a number of workers [14-18]. Essentially, in these calculations the metal spheres are
replaced by interacting dipoles with a polarizability evaluated on the basis of the Drude
formula for the dielectric constant of the metal. An effective dielectric constant for the
composite medium is then obtained by the use of the Clausius-Mossotti equation, or by
some extension of this formula which takes into account the influence of the local electric
field due to the randomly distributed particles [14]. Vlieger and co-workers {19-24]
developed a statistical theory for the dielectric properties of two-dimensional systems
of spherical, truncated spherical or spheroidal particies on a substrate, which takes into
account particle-substrate interaction by the method of image multipoles. The boundary
conditions for the potential and the normal component of the displacement vector yield
an infinite set of inhomogeneous linear equations for the multipole coefficients, which
can be solved approximately by considering a large enough finite set of equations
corresponding to a finite number of multipoles. The above-mentioned methods cannot
be employed when the interparticie distance and (or) the size of the particles become(s)
comparable with the wavelength of the incident radiation. Moreover, even when the
interparticle distance is much smaller than the wavelength of the incident light, replace-
ment of the metal particles by dipoles is not realistic when the fractional volume occupied
by these spheres s larger than 0.5 or so. At higher concentrations, multiple interactions
must be taken into account [25, 26].

There are substances which form periodic lattices just as ordinary solids but have
lattice constants comparable with the wavelengths of ultraviolet or visible light. For
example, there are ordered structures of some polymers [27-30], void lattices in jon- or
neutron-bombarded metals [31-33], and ordered structures in some biological systems
[34]. These systems therefore make the diffraction of electromagnetic waves in the
ultraviolet and visible range possible. A proper deseription of such phenomena should
take into account the multiple scattering of the electromagnetic field between the
particles within the inhomogeneous substance.

Lamb et al [35] proposed a2 modified version of the Korringa-Kohn-Rostoker (KKR)
method, used in the calculation of the energy band structure of electrons in solids [36,
37). toevaluate the field incident on a given metal sphere due to the waves scattering from
all other spheres in the composite medium. Their theory yields an effective propagation
wavevector in the infinite crystal (corrections due to disorder are included for some
limiting cases) and assuch isrelated to a transmission experiment in the forward direction
but it does not describe an actual experiment because it does not allow for a proper
matching of the incident electromagnetic wave to the reflected and transmitted into the
‘crystal’ waves at the interface. Ohtaka and co-workers {38—41] also transferred multiple-
scattering techniques from the KKR band-structure method and the low-energy electron
diffraction (LEED) theory [42] to the problem of multiple scattering of classical waves.
Recently, Modinos[43] developed aformalism for multiple scattering of electromagnetic
waves by a periodic monolayer of spheres using a straightforward approach based
entirely on electromagnetic theory. This method is equivalent to that of Ohtaka [39] and
has all the advantages of the LEED theory. It can describe the physical situation in an
actual transmission experiment, i.e. it makes it possible to calculate the reflection and
transmission matrix elements, for light incident at a given angle, of 2 two-dimensional
array of spherical particles embedded in a dielectric host material. The refiection and
transmission matrix elements of multilayers can be obtained as in the case of electron
scattering from knowledge of the scattering matrix elements of the constituent mono-
layers.
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In this paper we develop the formalism of [43] further by pointing out certain
symmetries in the matrix elements which describe the multiple scattering of light by a
plane of spheres (section 2.1} and incorporate into the formalism the influence of the
substrate (section 2.2). Finally, we present numerical applications of the method to
transmission experiments (section 3).

2. Formalism

2.1. Scattering of electromagnetic waves by a two-dimensional ordered array of spheres

In a medium characterized by a complex frequency-dependent permittivity e(w) the
electric field E(r, t) = Re[E(r) exp(—iwt)] can be expanded in spherical waves as follows
[44]:

% ! .
B0 =2 3 (Lah¥x2ikXin)+ alykXouf?). &
I=1 m=-1
The corresponding formula for the associated magnetic field is obtained from equation
(1) by interchanging the superscripts £ and H, changing the sign of the factor i/k
and multiplying the resulting expression by (£/u,)"/2. We assume that the magnetic
permeability equals that of vacuum 4. For magnetic materials, », must be replaced by
i in the relevant formulae. & = (€)% is the wavenumber. The functions z{kr) may
be any linear combination of the spherical Bessel function j,(k#) and the spherical Hankel
function &/ («r). These quantities as well as X, () are defined in [43]. The coefficients
af" in equation (1) are constants to be determined.
A plane electromagnetic wave described by

E(r) = Eo(k) exp(ik - r) H(r) = - (i/wpo)V x E(r) ()

where Ey(k) = Eq(k)p specifies the magnitude £, and the polarization p of the electric
field, has a corresponding spherical wave expansion given by equation (1) with z,(kr) =
ji{kr). Writing the expansion coefficients in the form

a0 = A - By ©

we can obtain explicit expressions for A J£#) by substituting equations (2) into equation
(1) and expanding exp(ik - r) into spherical waves.

When the electromagnetic wave described by equations (2) is scattered by a sphere
of radius § and permittivity £,,( @) centred at the origin of coordinates, it gives rise to a
total wave field outside the sphere, composed by the incident and scattered waves. The
expansion coefficients a}F# of the scattered wave are

a?r-nE(H) = Tf{ma?mﬁ(m_ “4)

Explicit expressions for TP are given in [43).
The energy absorbed per unit time by the sphere is given by the negative integral of
the Poynting vector over the surface of the sphere. We denote the average of this quantity

over a period T = 27/w by W. In the long-wavelength limit (kyS, kS < 1), one obtains
the electrostatic approximation

W = (4mewS® 2} [Eo|? Im[(ey — €)/ (22 + £y)]. (5)

Wenow consider an assembly of non-overlapping spheres of radius § and permittivity
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en(w), centred on the sites R, of a two-dimensional lattice in the x—y plane, embedded
ina medium of permittivity £(w). A plane electromagnetic wave with k = (kj, k), where
kj = (k,, k,) denotes the components of the wavevector in the plane of the spheres and
k, its component normal to this plane, is incident on the spheres from the left (&, > 0).
Because of the two-dimensional periodicity of the structure under consideration the
corresponding scattered wave can be written as

i ! .
B =2 3 (i xS exoliy R (kr)Xin(s)
Ry

=l m=~-1

+ b3 2 expiky - RAT (k)X inin)) ©)
R

where r, = r — R, and b}1FH) are coefficients to be determined, The scattered wave can
also be expressed as a series of plane waves with wavevectors

K=k +g, = [k — (ky + 2% M

where &y now stands for the reduced wavevector within the surface Brillouin zone of the
given lattice corresponding to the incident wavevector and g are the reciprocal (two-
dimensional) lattice vectors. The s = + and — signs on K are used for z > 0and z <0,
respectively. Finally, we can express the amplitude of a scattered plane wave in terms
of that of the incident plane wave:

[Eely = 2 Mg go[Enlis 8)
g
where the subscripts / and i’ denote Cartesian components.
. .1 .
Miigr = 0w oy Sir + AGITBEY — 3 2 e KylAG TBEF.  (9)
Iy
The superscript T denotes as usual the transpose matrix and
0 when any two of the indices are equal
g =19 1 ifi, j, k is an even permutation of x, v, z
—1 if i, j, k is an odd permutation of x, y, 2.

In equation (9) we used, for convenience, matrix notation in angular momentum space.
Explicit expressions for the column vector A% ={4,,(K)}; are given in [43].
B, EH = {b} FM} are to be evaluated for anincident plane wave with parallel wavevector
k + g incident from the left (right) corresponding to s =+ (—) with an ith component
electric field. The above quantities enter the calculation through the A%coefficients
defined by equations (3), which we may write as the column matrix
AJE:s = {ANE (RS} We have

1- TEQW TEQ® /BYE s TE APE \s

( —THOQ® |- T”ﬂ“)) (B"”) = (TH AY /g

where | is the unit matrix. The matrix elements of Q! and @ depend on the scattering

properties of the individual sphere and the geometry of the plane. Analytic expressions
for these matrix elements are given in the appendix.

Equations (10) constitute a system of infinitely many linear equations. It issolved by
introducing an angular momentum cut-off I, and truncating all angular momentum

(10)

I'd
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Figure 1. Scattering of a plane wave from a per-
iodic monolayer of spherical particles: (2} plane
[E rrlgi wave incident from the left; (&) plane wave inci-
(&) z<y 220 250 dent from the right.

expansions to /., thus reducing the dimension of the system to 2{({,,, + 1)* — 1}. One
can easily show using the properties of Q) and Q' given in the appendix that this
system can be reduced to two systems of (/. + 1) — 1 linear equations. This can be
achieved if we split the angular momentum space into two subspaces with{ + m odd and
[+ m even. Substituting the expression for A}; derived in [43] into equation (9) and
using the fact that the B*-coefficients couple only to certain of the A% coefficients, one
can show that the matrices M obey the following symmetry relations:
M?ng =Mg_if§'§‘: Mf‘ gt = M;rs?l (11)

for the combinations (i, i) = (x, x), (y.¥), (z. 2}, (x, ¥), (v, xyand (i, i) = (x, 2), (z, x),
(v, 2), (z, y) respectively.

For a wave incident from the left the components of the transmitted and reflected
electric field are given by (see also figure 1)

[Eu]gr 2 M gheg't [Em g . (12)

[Erf]gr 2 Mg: g [Ein]g‘r"- (13)

The transmittance & and reflectivity % are defined as the ratios of the fluxes of the
transmitted and reflected waves respectively to the flux of the incident wave. Integrating
the Poynting vector over the x—y plane from both sides of the layer and taking the average
over a period, one can show that

T@) = 2 (Eveolpl Enn)iKE ) Z (B, L[ EnliK: (14
B P

The requirement for energy conservation implies that the absorbance U of the periodic
monolayer of spheres is
U=1-T—-R. (15)
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2.2. Influence of the substrate

Let the substrate be a homogeneous dielectric plate of permittivity &, embedded in a
medium of permittivity £, the interfaces being the plane surfaces z =/and z =/ + d.
Assume that the incident electromagnetic field is a plane wave, given by equations (2)
with the wavevector K in the x-z plane. The normal to the interfaces components of
the wavevector inside and outside the substrate are

g, = [espow? — (k) + go)*]'? (16)
and
g = [epow?® — (k) + go)* 11 (17)

respectively. The boundary conditions for continuity of the tangential components of
the electric and magnetic fields at the interfaces determine the transmitted and reflected
electric field as follows:

[Etr]gr' = Tg!{EO(K;g)}iaggo (18a)

{Eun} = expliky - (r = R [Evlpy (18b)

[Exly = RpE(K )0, (19a)

Ea(n)} = exp(iKz, - ) [Ex)gy (19b)
where

Tew = exp(igl) {b,c; exp(igsd)/[1 - o} exp(2ig,d)]} (20)

RSy = exp(2igl) {a:bc, exp(2ig,d)/[1 - af exp(2ig,d)] - a,} (21)
with

a, = (Esq - SQS)/(ESQ + SQS) by=1-a, Cr ™ 1+ax (223)
a,v:(qs'"q)ll(qs""q) b,v=1'—ay C}'=1+‘2y (22b)
a, = —a, b, =2eq/(s,q+eq,) ¢, =2&,q./(¢,q+8q,) (22¢)

andR ={0,0,4 + D).
If the parallel to the interfaces component of the wavevector of the incident field
makes an angle @ with the x axis, we define the transmission matrix T as

Toxge = O (Th: c0s? @ + T2, sin? @) (23a)
Toy.gry = Ogp (Ta: sin? @ + T3, cos? @) (23b)
Torigr = O To: (23¢c)
Toigy = Teyigx = Ogg(Th — T5,)sin @ cos @ (23d)
Terig: = Tongx = Topgr = Touigy =0 (23e)

with an exactly analogous definition for the reflection matrix R. In this case, the trans-
mitted and reflected electric field are given by

[Eulg = 2 Ty tEo(K Y B, (24a)

{E () = exp[ikz, - (r = R)] [Eulga (24b)
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[Ealy = 2 Ry grlBo(Ki N1 S5 (252)
]
{E(r)}i = exp(iKy, - 1) [Ect]gy- (25b)

Finally, we consider a system consisting of a periodic monolayer of spheres at the
plane z = 0 and a substrate. The transmiftance and reflectivity of this system can be
expressed in terms of the scattering matrices M*' of the coating layer, given by equation
(9), and the transmission and reflection matrices, T and R respectively, of the substrate,
derived above. The situation is schematically illustrated in figure 2. For an incident plane
wave with wavevector K37, we obtain after some straightforward algebra the following
formulae for the transmitted and reflected electric field:

[Eulg = ZATE - M*R) M ol Bo (B )b (264)
B} = 2 explik] - (r — B [Euly (26b)
[Exly = Z{M™* + M~R( - M*"R) "M}y {Eo(B)) (270)

{E 4} = 2 exp(ik; - N[Ex)g (27b)

The transmittance and reflectivity of the system are obtained by substitution of equations
(26) and (27} in equations (14).

3. Applications

3.1. Scattering from a periodic monolayer of dielectric spheres

In this section we calculate the reflection and transmittance of electromagnetic waves
from a periodic monolayer of dielectric spheres. In order to test our method and compare
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Figure 3. Reflectivity of normally incident light of reduced wavenumber Z from a square
lattice of polystyrene spheres in water. The ratio of the sphere radius to the lattice parameter
ts equal to 0.35.

it with that of Ohtaka and co-workers [38—41], we first consider a physical system that
they treated in some detail: a monolayer of spherical polystyrene particles in water [41].
The spherical particles of radius S = 35 nm are arranged on a two-dimensional square
lattice with a lattice constant @ = 100 nm. For the relative refractive index we use the
value corresponding to polystyrene particles in water in the visible range: (ey/e)"? =
1.6.

In figure 3 we present our results for the reflectivity of normally incident x-polarized
light asa function of the reduced wavenumber Z = ka/2x. We performed the calculation
using an angular momentum cut-off /.., = 6, which is sufficient to obtain well converged
results in the entire considered range of Z. For values of Z given by 0 < Z < 1, only the
first reciprocal lattice vector g¢ = 27(0, 0)/a enters in the calculation of the reﬂectmty
and the transmittance of the system. For I Z < V2 the next four vectors (g.=
ZJ/((I 0)/a, 27(—1,0)/a, 27(0, 1}/a, 27(0, —1)/a) must be included whereas, for

2 = Z < 2,one must take into account also the reciprocal lattice vectors: g, = 2a(1, 1)/
a,2n(1, —1)/a, 22(—-1, 1)/a, 27(~1, —1)/a. Comparison with the results of Inoue et al
[41] shows that there is overall agreement in the characteristic features of the reflectivity
curve. These features have been extensively discussed by Inoue e af [41]. We find a
double peak at Z = 0.88 and Z = 0.92, of height almost equal to one and a lower peak
at Z = 1, all these in perfect agreement with the results of Inoue et al. We also find a
second smallerdouble peak at Z = 1.25and Z = 1.29 that is similarly produced by Inoue
el al at the same positions but with a somewhat smalfer magnitude. The last peak at
Z = V2 is not produced in the reflectivity curve of Inoue ef al. We believe, however,
that this peak is indeed there.

Table 1 shows the convergence behaviour of our results for the transmittance, as a
function of the anguiar momentum cut-off [, for various values of both Z and the ratio
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Table 1. Transmittance of a system of polystyrene spheres of radius § arranged on a square
lattice of lattice parameter 2 in water, for normally incident light. The convergence is shown
as a function of the angular momentum cut-off J,,,, for various values of the ratio $/z and the

reduced wavenumber Z.

zZ loas S/a=10.30 S/a=10.35 Sla=0.40
0.2 1 0.994 656 0.987 766 0.971361
0.2 2 0.994 797 0.987 244 0.972738
0.2 3 0.994 794 0.987219 0.972 564
0.2 4 0.994 794 0.987219 0.972562
0.2 5 0.994 794 0.987219 0.972 561
0.2 6 0.994 794 0.987219 0.972561
0.9 1 (1.999924 0.063242 0.008425
0.9 2 0.999958 (.639551 0.868 883
0.9 3 0.999810 0.611281 0.976 547
0.9 4 0.999828 0.611717 0.97554%
0.9 5 0.999 826 0.611147 0.975906
0.9 3] 0,999 826 0.611160 0.975857
1.4 1 0.993937 0.994 786 0.995966
1.4 2 0.955727 0.508 889 0.949 588
1.4 3 0.969900 0.86} 165 0.473914
1.4 4 0.9733816 0.898310 0.551328
1.4 5 0.973 667 0.895 852 0.612930
1.4 6 0.973 669 0.895855 0.615346

§/a. In the long-wavelength limit, as expected, the convergence is very fast and already
the dipole term gives very good results. However, when the wavelength decreases and
(or) the size of the spheres increases, higher-angular-momentum components must be
taken into account in order to describe correctly both the Mie scattering from a single
sphere and the multiple-scattering effects.

After calculating independently the trapsmittance and reflectivity of the system using
equations (14) we deduced the absorbance U = 1 ~ & — 3 which never exceeded 10™5,
This order of magnitude gives an indication of the numerical accuracy in our calculation,
since the absorbance of a system of dielectric particles having real dielectric constants is
identically zero. This result was confirmed for all the cut-offs [,,, = 1,2, .. ., 6 that we
considered in the angular momentum expansions, indicating the inherent consistency
of our formalism.

3.2. Light scattering from a square lattice of gold particles on a sapphire substrate

We appiied our method to an optical transmission experiment performed in [8, 9] on a
system of gold particles arranged on a square lattice on a sapphire substrate. Despite
the small deviations from periodicity and spherical shape of the particles (their axial
ratio was estimated to be 1.3-1.7) occurring in the actual experiment, we have assumed
in our calculations spherical particles arranged on a perfectly periodic square lattice.
The diameter of the gold particles in the experiment ranged from 20 to 35 nm, whereas
the lattice constant was 50 nm.

For the bulk relative dielectric function yz{w) of gold, we interpolate to the values
measured by Johnson and Christy [45]. However, these values which contain both the
Drude term and the interband absorption contribution must be corrected because of the
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Figure 4. Absorbance of normally incident light of wavelength A from a square lattice of Au
spheresofradiusS = 15nm {: Jand§ = 17am{(. ...}, invacuum. Thelattice constant
is equal to 50 nm,

small size of the particles that we have. Itis accepted that in small particles the electronic
mean free path is shorter than in the bulk. Following several workers [6, 7, 22, 23], we
incorporate this effect in the dielectric constant in an empirical manner as follows:

x(@) = xp(0) + wif/(w? +iwrs') - Wif(0® +iwT™") (28)
where o, is the plasma frequency, T the relaxation time in the bulk metal and
T l=15! + Ve8! (29)

is the inverse relaxation time, corrected for the finite size of the particle. Ve is the Fermi
velocity and § the radius of the spherical particle. Following [22, 23], we use the values
ko, =8.99eV, hrg! =0.027eV and AV =0.903eV nm. The refractive index of
sapphire shows little dispersion in the optical region but for simplicity we use the value
n, = 1.77 throughout. For the ambient we take n = 1.

The absorbance of the whole system {coating plus substrate) is due to the assembly
of Au spheres. Thus, if we consider dielectric, instead of metallic, spheres the total
absorbance must be identically zero. This is a way to check the accuracy in the calculation
of total reflectivity and transmittance, given by equations (14), (15), (26) and (27). We
performed this test by putting polysiyrene spheres on the sapphire substrate and the
total absorbance of the system was found to be 107*.

We first consider a layer of gold spheres in isolation. The calculated absorbance for
two sizes of spheres (within the range of measured radii) is shown in figure 4. The most
striking feature is the absorption peak at about 512 nm, which becomes more pronounced
when the spheres are larger. This peak corresponds to the localized plasmon resonance
of a single Au sphere as can be seen in figure 5. We confirmed that, within the range of
wavelengths considered, the electrostatic limit constitutes a reasonably good approxi-
mation which in turn justifies the method used by Vlieger and co-workers [19-24] in this
instance. However, this is not generally true. Calculations on silver spheres of radii
of the order of 40 nm show that multiple-scattering effects produce variations in the
absorption curve (shifts in the absorption peaks), which depend strongly on the lattice
constant. In all our calculations we used an angular momentum cut-off {,, = 4, which
vields well converged results.
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Figure 5, Absorbance of light of wavelength A from a single Au sphere of radius § =
15 am: , multiple treatment; . . . ., electrostatic limit, calculated using equation (5).

H we consider the substrate alone to be a homogeneous dielectric sapphire plate, the
transmittance shows a periodic oscillatory behaviour as a function of the thickness of
the slab with a period equal to 1/2n cos 8 as expected. Analogous oscillatory behaviour
is found for the transmittance through the coated substrate, as well as the relative
transmittance with respect to that of the bare substrate. In figure 6 we show the relative
transmittance averaged over a period, together with the transmittance of the coating
alone, as well as the experimental data in [8, 9]. Clearly visible is the plasmon resonance
peak that we calculate around 4 = 512 nm. As we can see, the relative transmittance
curve is shifted to higher transmittance values with respect to the transmittance of the
coating alone. The calculated curve approaches the experimental curve for sphere radii
ranged between 15 and 17 nm which corresponds well to the average size of particles
measured in [8, 9]. The main discrepancy with the experimental data is the position of
the peak which we find at 512 nm, whereas experimentally it is located at around 540 nm.
This discrepancy is probably because the gold particles do not have exactly a spherical
shape. Indeed, Vlieger and co-workers [22-24] have shown that, if instead of spherical
particles one considers truncated spherical or oblate spheroidal particles, the plasmon
resonance peak is shifted to longer wavelengths. These workers fitted the minimum in
the experimentai curve to their model and found good agreement assuming particles
with a diameter of 26.8 nm and axial ratio equal to 1.21 {truncated spherical model) or
with a diameter of 29.4 nm and axial ratio equal to 2.35 (oblate spheroidal model). An
extension of our method enabling us to calculate the scattering of electromagnetic waves
by non-spherical particles is in progress. Further applications of our method will appear
in a forthcoming publication [46]. :

4. Conclusion

We developed a method for calculating the scattering of light from a periodic two-
dimensional array of spherical particles adsorbed on a uniform dielectric slab and
demonstrated the applicability of the formalism to real systems. Quz first application of
the method to the analysis of optical transmission data on a system of gold particles on
a sapphire substrate gives a reasonably good account of the experimental situation.
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7 0 G o Beo array of Au spheres alone and the experimental

data (W) are also shown,

Appendix
The matrices Q¢ and Q® which describe multiple scattering within a plane of spheres
are given by [43]
QL =HE + DI+ DIV @BF BPZEET + 207 aP ZImT +m'm2ly (A1)
Qe = [+ DI+ 1)] 712 (2:’ + 1H(8x/3) 2 (- )™

X P Zhr i By e (L - Lm') — (8r/3) A (-1)™

X BT 2™ T By ey (L L mY) + mZi

x [(I' + m"Y(I' — m)/ QI — DERP + D]V (A2)
where
zZlw' = 2 exp(iky * R) Gimre (—R)) (A3)
= "
G iyt (—Ry) = 2 2 4m(— 1) IR(—q)mtea
=0m'=-1

X B (I'm's I"m"V1f (KR )Yy e (—R,) (Ad)
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Bl 1) = [ Vi O 1 ()Y e () (AS)
af =1[(l — m)(I + m + 1)) | (A6)
Br =3+ m)(l—m+ 1] (A7)

The prime on the lattice sum in equation (A3) indicates that the term R, = 0 is to be
omitted. We have (see, e.g., [42])
- unless {4+ mevenand/? + m' even
Ziy' = (A8)
or !+ moddand{" + m’ odd.
From (A8) it follows that

unless [+ mevenand! + m' even

Qb =0 AS
fom'sIm or 14+ moddand ! + m' odd (A9)
@ unless [+ mevenand !’ + m' odd

Ql'm"Im = O (AIO)

) or [+ moddand{’ + m’ even.
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