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Abstract. Wepresent amethod for lhecalculationofthescatleringollight by aperiodictwo- 
dimensional array of spherical particles adsorbed on a uniform dielectric slab, Multiple 
scattering of light between the particles of the overlayer and between the overlayer and the 
substrate is taken fully into account. The method is applied to light scattering from a square 
lattice of gold particles on a sapphire substrate for which experimental data are available. 
The agreement between theory andexperiment is reasonablygood. 

1. Introduction 

The study of optical properties of inhomogeneous films has attracted special interest in 
the last few years for physical as well as for technological reasons. The Raman scattering 
by molecules adsorbed on rough metal surfaces for instance has drawn much attention 
due to the extremely large enhancement of the scattering cross section. The under- 
standing of the origin of the surface-enhanced Raman scattering provided the impetus 
for a number of optical investigations of rough surfaces [1-4]. Thin films consisting of 
small metallic particles embedded in a dielectric host material have remarkable optical 
properties which might be useful for specific technological purposes, e.g. as coatings for 
solar energy absorbers [5 ] .  In general, granular or discontinuous metal films can exhibit 
optical properties which are strikingly different from the bulk behaviour and have been 
formany yearstheactive targetofexperimentalinvestigation[6,7]. Recently, Craighead 
and Niklasson [8] and Niklasson and Craighead 191 fabricated two-dimensional square 
arrays of gold particles having diameters of 20-35 nm with a spacing of 50 nm on thick 
sapphire substrates and measured the optical transmission through this structure. 

From a theoretical point ofview, the problem of light scattering by a spherical object 
situated in a homogeneous medium has been solved rigorously early in this century in 
termsof classical electromagnetic theory by Mie [lo] and Debye [ll]. In this treatment, 
the spheres are assumed to be large enough for the macroscopic dielectric theory to be 
applicable, with no other limitation on their size. When the wavelength of light is 
much larger than the dimension of the particles and the distance between them, the 
electrostatic approximation can be employed and the optical properties of the metal 
particles can be characterized by an effective medium, as described by Maxwell Garnett 
[12] for spherical particles and by David [13] for spheroidal particles. Calculations 

0953-8984’91/418135 t 14 $03.50 0 1991 IOP Publishing Ltd 8135 



8136 

dealing with certain aspects of the optical properties of inhomogeneous systems con- 
sisting of metallic spheres of radius 10 nm or 50 in a dielectric host have been published 
by a number of workers [14-18]. Essentially, in these calculations the metal spheres are 
replaced by interacting dipoles with a polarizability evaluated on the basis of the Drude 
formula for the dielectric constant of the metal. An effective dielectric constant for the 
composite medium is then obtained by the use of the Clausius-Mossotti equation, or by 
someextensionof this formula which takesintoaccount theinfluenceofthelocalelectric 
field due to the randomly distributed particles [14]. Vlieger and co-workers [19-241 
developed a statistical theory for the dielectric properties of two-dimensional systems 
of spherical, truncated spherical or spheroidal particles on a substrate, which takes into 
account particle-substrate interaction by the method ofimage multipoles. The boundary 
conditions for the potential and the normal component of the displacement vector yield 
an infinite set of inhomogeneous linear equations for the multipole coefficients, which 
can be solved approximately by considering a large enough finite set of equations 
corresponding to a finite number of multipoles. The above-mentioned methods cannot 
be employed when the interparticle distance and (or) the size of the particles become@) 
comparable with the wavelength of the incident radiation. Moreover, even when the 
interparticle distance is much smaller than the wavelength of the incident light, replace- 
ment of the metal particlesby dipoles is not realistic when the fractional volume occupied 
by these spheres is larger than 0.5 or so. At higher concentrations, multiple interactions 
must be taken into account [E,  261. 

There are substances which form periodic lattices just as ordinary solids but have 
lattice constants comparable with the wavelengths of ultraviolet or visible light. For 
example, there are ordered structures of some polymers [27-301, void lattices in ion- or 
neutron-bombarded metals [31-331, and ordered structures in some biological systems 
[34]. These systems therefore make the diffraction of electromagnetic waves in the 
ultraviolet and visible range possible. A proper description of such phenomena should 
take into account the multiple scattering of the electromagnetic field between the 
particles within the inhomogeneous substance. 

Lamb eta1 [35] proposed a modified version of the Korringa-Kohn-Rostoker (KKR) 
method, used in the calculation of the energy band structure of electrons in solids [36, 
371, loevaluate the ficldincident on agiven metal spheredue to the wavesscatteringfrom 
all other spheres in the composite medium. Their theory yields an effective propagation 
wavevector in the infinite crystal (corrections due to disorder are included for some 
1imitingcases)andassuchisrelated toatransmissionexperiment in the forwarddirection 
but it does not describe an actual experiment because it does not allow for a proper 
matching of the incident electromagnetic wave to the reflected and transmitted into the 
'crystal' wavesat the interface. Ohtaka andco-workers [38-41] also transferred multiple- 
scattering techniques from the KKR band-structure method and the low-energy electron 
diffraction (LEED) theory [42] to the problem of multiple scattering of classical waves. 
Recently,Modinos[43] developedaformalismfor multiplescatteringofelectromagnetic 
waves by a periodic monolayer of spheres using a straightforward approach based 
entirely onelectromagnetic theory. This method is equivalent to that of Ohtaka [39] and 
has all the advantages of the LEED theory. It can describe the physical situation in an 
actual transmission experiment, i.e. it makes it possible to calculate the reflection and 
transmission matrix elements, for light incident at a given angle, of a two-dimensional 
array of spherical particles embedded in a dielectric host material. The reflection and 
transmission matrix elements of multilayers can be obtained as in the case of electron 
scattering from knowledge of the scattering matrix elements of the constituent mono- 
layers. 

N Stefanou and A Modinos 
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In this paper we develop the formalism of [43] further by pointing out certain 
symmetries in the matrix elements which describe the multiple scattering of light by a 
plane of spheres (section 2.1) and incorporate into the formalism the influence of the 
substrate (section 2.2). Finally, we present numerical applications of the method to 
transmission experiments (section 3). 

2. Formalism 

2.1. Scattering of electromagnetic waves by a two-dimensional ordered array of spheres 

In a medium characterized by a complex frequency-dependent permittivity &(U) the 
electric fieldE(r, I )  = Re[E(r) exp(-iwt)] can be expanded in spherical waves as follows 
[44]: 

The corresponding formula for the associated magnetic field is obtained from equation 
(1) by interchanging the superscripts E and H, changing the sign of the factor ilk 
and multiplying the resulting expression by ( E / ~ o ) " ~ .  We assume that the magnetic 
permeability equals that of vacuum po. For magnetic materials, po must be replaced by 
pin the relevant formulae. k = ( p o ~ ) 1 1 2 ~  is the wavenumber. The functions zl(kr) may 
be any linear combination of the spherical Bessel function jI(kr) and the spherical Hankel 
function hj+ (kr). These quantities as well as X I m ( i )  are defined in [43]. The coefficients 
a z W  in equation (1) are constants to be determined. 

A plane electromagnetic wave described by 

E(r) = E&) exp(i. r) &r) = - (i/opo)V x E(r) (2) 
where E&) = En(k)p specifies the magnitude Eo and the polarization p of the electric 
field, has a corresponding spherical wave expansion given by equation (1) with z,(kr) = 
jl(kr). Writing the expansion coefficients in the form 

we can obtain explicit expressions forAK(W by substituting equations (2) into equation 
(1) and expanding exp(ik . r) into spherical waves. 

When the electromagnetic wave described by equations (2) is scattered by a sphere 
of radius S and permittivity &,(U) centred at the origin of coordinates, it gives rise to a 
total wave field outside the sphere, composed by the incident and scattered waves. The 
expansion coefficients akE(" of the scattered wave are 

(4) +E(W = r,E(WaK(W, a lm 

Explicit expressions for Tf(" are given in 1431. 
The energy absorbed per unit time by the sphere is given by the negative integral of 

thePoyntingvectorover thesurfaceofthesphere. Wedenote theaverageofthisquantity 
over a period T =  %/U by w. In the long-wavelength limit (kMS, kS Q l), one obtains 
the electrostatic approximation 

w =  (4n&wS3/2) lEnIZ Im[(€M - & ) / @ E  + EM)]. ( 5 )  
Wenow consider an assembly of non-overlapping spheres of radius Sand permittivity 
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E ~ ( w ) ,  centred on the sites R ,  of a two-dimensional lattice in thex-y plane, embedded 
in amediumofpermittivity E ( w ) .  Aplaneelectromagnetic wave with k = (kll, k J ,  where 
4, = (kx ,  k,) denotes the components of the wavevector in the plane of the spheres and 
k, its component normal to this plane, is incident on the spheres from the left (k ,  > 0). 
Because of the two-dimensional periodicity of the structure under consideration the 
corresponding scattered wave can be written as 

N Stefanou and A Modinos 

+ bLn exp(ik# .Rn)hi+(krw)Xtm(f , , ) )  (6) 
R. 

where r. = r - R, and bhE('") are coefficients to be determined. The scattered wave can 
also be expressed as a series of plane waves with wavevectors 

K ;  = (k ,  + g, 2 [k? - (k,, + g)?]"*) (7) 
where kl, now stands for the reduced wavevector within the surface Brillouin zone of the 
given lattice corresponding to the incident wavevector and g are the reciprocal (two- 
dimensional) lattice vectors. The s = + and - signs on X are used for z > 0 and L < 0, 
respectively. Finally, we can express the amplitude of a scattered plane wave in terms 
of that of the incident plane wave: 

where the subscripts i and i' denote Cartesian components. 

The superscript T denotes as usual the transpose matrix and 
0 when any two of the indices are equal 

E . .  irk = - [ 1 if i, j .  k is an even permutation of x, y, z 
-1  ifi.j,kisanoddpermutationofx,y,z. 

In equation (9) we used, for convenience, matrix notation in angular momentum space. 
Explicit expressions for the column vector ALj = {Atm(Ki) l i  are given in [43]. 

= (bt,,,(m}areto beevaluatedforan incident plane wavewith parallelwavevector 
kll + g incident from the left (right) corresponding to s =.t (-)with an ith component 
electric field. The above quantities enter the calculation through the A"-coefficients 
defined by equations ( 3 ) .  which we may write as the column matrix 
A:F(H(H)s I {AY,(" (K; ) ) ,  . We have 

1- TEfiL(1) TEfiZc') T E  AOE t I i - THR(?) I - THfi (1) .  = ( T H A o H j g i  (10) 

where I is the unit matrix. The matrix elements of fi(') and R'Z)depend on the scattering 
properties of the individual sphere and the geometry of the plane. Analytic expressions 
for these matrix elements are given in the appendix. 

Equations (10) constitute a system of infinitely many linear equations. It issolved by 
introducing an angular momentum cut-off 1" and truncating all angular momentum 
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Figure 1. Scattering of a plane wave from a per- 
iodic monolayer of spherical particles: ( 0 )  plane 
wave incident from the left; (b) plane wave inci- 
dent from the right. (b) z < o  z-0  z > il 

expansions to I,,,, thus reducing the dimension of the system to 2{(lmax + - l}. One 
can easily show using the properties of a(') and given in the appendix that this 
system can be reduced to two systems of (Imar + 1)' - 1 linear equations. This can be 
achieved if we split the angular momentum space into two subspaces with 1 + m odd and 
I + m even. Substituting the expression for Aii derived in [43] into equation (9) and 
using the fact that the Bt-coefficients couple only to certain of the A"-coefficients, one 
can show that the matrices M obey the following symmetry relations: 

forthecombinations(i,i') = ( x , x ) ,  (y,y),(z,z),(x,y),(y,x)and(i,i') = ( x , z ) , ( z , x ) ,  
(y, L), (r ,y) respectively. 

For a wave incident from the left the components of the transmitted and reflected 
electric field are given by (see also figure 1) 

MZlgli. = M-9-s' g , :p7 '  M&,r = - M - s - s '  gr:g.i' (11) 

[E,,Igi = MJ+g.;-[Einlg+'~ (12) 

[E,], ,  = M;&.i.[Ein]g+'i.. (13) 

8'. i' 

f , i '  

The transmittance 9 and reflectivity 3 are defined as the ratios of the fluxes of the 
transmitted and reflected waves respectively to the flux of the incident wave. Integrating 
the Poyntingvector over thex-y plane from both sidesofthe layer and taking the average 
over a period, one can show that 

T ( 3 )  = C [Etr(m Igi[Ev(q 12KJ2/E [Ejnlgi[Eio 1:; Kg. (14) 
g. i S.! 

The requirement for energy conservation implies that the absorbance 
monolayer of spheres is 

of the periodic 

Q = 1 - 9 -3. (15) 
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2.2. Influence of the substrate 

Let the substrate be a homogeneous dielectric plate of permittivity E, embedded in a 
medium of permittivity E, the interfaces being the plane surfaces z = I and z = + d. 
Assume that the incident electromagnetic field is a plane wave, given by equations (2) 
with the wavevector K: in the x-z plane. The normal to the inierfaces components of 
the wavevector inside and outside the substrate are 

N Stefanou and A Modinos 

4 s  = [EsPoW’ - (kli + 

4 = [WOW’ - (kli + g ~ ) * ~ ’ ~  

(16) 

(17) 

and 

respectively. The boundary conditions for continuity of the tangential components of 
the electric and magnetic fields at the interfaces determine the transmitted and reflected 
electric field as follows: 

[EtrlZ; qi{Eo(KiJ};hao (18a) 

{&Jr)}, = exp[iK.&. ( r  - R)] [&Igoj (186) 

I E d  1, = R;i@il W Z o ) } t  (194 

{E&)}; = exp(x;o. r )  [E&; (196) 

Go, = exp(iq0 @,c; exp(iq,d)/[l -a: exp(2iqS4l) (20) 

ROPo; = exp(2iqr) {a,bicj exp(2iqSd)/[l -a?  exp(2iq,d)] -a,} (21) 

a, = (E,q - q5)/(ELq + Eq,) c, = 1 +a,  (22a) 

a, = (qs-q) / (qs  + q) b, = 1 -ay cy = I + a ,  (226) 

where 

with 

b, = 1 - a ,  

0 2  = -0, bz = 2Eq/(Esq+ Eqs) C, = 2E,qs/(E,q+ Eq,) (22C) 

If the parallel to the interfaces component of the wavevector of the incident field 
and R = (O,O, d + r ) .  

makes an angle q with the x axis, we define the transmission matrixTas 

T,:,, = ha( ( cx cos2 q + Pu sinZ (p) (234 
Tpy;g~v = 6ssp(7$ sinZ q + Pm cos2 q) (236) 

T,,:,~, = 6,. cr (234 

(234 Tgz:zay - - Tpy:g,x = S,.(‘l., - Pu) sin q cos q 

(234 
- 

T8x;s.z = Tg1;p.r - Tgy:s,z = T g z ; g , y  = 0 
with an exactly analogous definition for the reflection matrix R. In this case, the trans- 
mitted and reflected electric field are given by 
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FigureZ. Scatteringofaplane wave 
from a periodic monolayer of 
spherical particles on a substrate, 

[E&; = z R,,,,.~~~o(~;,)li~,, (34 

{.@&)I; = exp(% . r) [&lggl. 

i’ 

(Zb)  
Finally, we consider a system consisting of a periodic monolayer of spheres at the 

plane z = 0 and a substrate. The transmittance and reflectivity of this system can be 
expressed in terms of the scattering matrices M”’ of the coating layer, given by equation 
(9 ) ,  and the transmission and reflection matrices, T and R respectively, of the substrate, 
derivedabove. The situation isschematically illustratedin figure2. For an incident plane 
wave with wavevector K;,, we obtain after some straightforward algebra the following 
formulae for the transmitted and reflected electric field: 

[E,],, = z(T(I - M + ~ R ) - ~ M t + ~ g ~ , , i ~ ~ ~ ~ ( ~ ~ o ) l i ~  (264  
i’ 

{ W r ) l i  = exp(x; . r ) [ ~ , l , ~ .  ( 2 7 ~  
E 

The transmittance and reflectivityofthesystem areobtained by substitution ofequations 
(26) and (27) in equations (14). 

3. Applications 

3.1. Scattering from a periodic monolayer of dielectric spheres 

In this section we calculate the reflection and transmittance of electromagnetic waves 
fromaperiodicmonolayerofdielectricspheres. Jnorder to test our methodandcompare 
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2 

Figure 3. Reflectivity of normally incident light of reduced wdvenumber Z from a square 
latticeofpo1ystyrenespheresinwater.The ratioofthesphere radiustothelattice parameter 
isequal to0.35. 

it with that of Ohtaka and co-workers [3-1], we first consider a physical system that 
they treated in some detail: a monolayer of spherical polystyrene particles in water [41]. 
The spherical particles of radius S = 35 nm are arranged on a two-dimensional square 
latticc with a lattice constant a = 100nm. For the relative refractive index we use the 
value corresponding to polystyrene particles in water in the visible range: (eM/e)'I2 = 
1.6. 

In figure 3 we present our results for the reflectivity of normally incident x-polarized 
light asafunctionof thereducedwavenumberz = ka/2n. We performed thecalculation 
usinganangular momentum cut-off I,,, = 6, which issufficient toobtain wellconverged 
results in the entire considered range of 2. For values of Z given by 0 e Z < 1, only the 
first reciprocal lattice vector go = Zn(0, O)/a enters in the calculation of the reflectivity 
and the transmittance of the system. For 1 =s Z < .\/? the next four vectors (g, = 
2x 1 , 0  a ,  2n(-l,O)/a, 2n(O,l)/n, 2 4 0 ,  -l)/a) must be included whereas, for 

a ,  k(1, -l)/u, 24-1, l)/u,Zn(-l, -l)/a. Comparisonwith the resultsof lnoue era1 
[41 J shows that there is overall agreement in the characteristic features of the reflectivity 
curve. These features have been extensively discussed by Inoue er a1 [41]. We find a 
double peak at Z = 0.88 and Z = 0.92, of height almost equal to one and a lower peak 
at 2 = 1, all these in perfect agreement with the results of Inoue er al. We also find a 
second smaller double peak at Z = 1.73 and 2 = 1.29 that is similarly produced by Inoue 
el a[ at the same positions but with a somewhat smaller magnitude. The last peak a t  
Z = fi is not produced in the reflectivity curve of Inoue et al. We believe, however, 
that this peak is indeed there. 

Table 1 shows the convergence behaviour of our results for the transmittance, as a 
function of the angular momentum cut-off I,,,, for various values of both Z and the ratio 

t A 2 5 Z < 2,onemusttakeintoaccountalsothereciprocallatticevectors:g, = h(1 ,  1)/ 
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Table 1. Transmittance of a system of polystyrene spheres of radius S arranged on a square 
latticeof lattice parameter ain water, for normally incidentlight. Theconvergenceisshown 
as a function of the angular momentum cut-off I,,, for various values of the ratio Sla and the 
reduced wavenumber Z .  

z C, S/a = 0.30 S/a = 0.35 S/n = 0.40 

0.2 1 0.994656 0.987766 0.971 361 
0.2 2 0.994797 0.987244 0.972738 
0.2 3 0.994794 0.987219 0.972564 
0.2 4 0.994 794 0.987219 0.972562 
0.2 5 0.994794 0.987219 0.972561 
0.2 6 0.994794 0.987219 0.972561 

0.9 1 0.999924 0.063242 0.008425 
0.9 2 0.999958 0.639 55 1 0.868885 
0.9 3 0.999810 0.611281 0.976547 
0.9 4 0.999828 0.611717 0.975546 
0.9 5 0.999826 0.611 147 0.975906 
0.9 6 0.999826 0.611160 0.975857 

1.4 1 0.993937 0.994 786 0.995 966 
1.4 2 0.955727 0.908889 0.949588 
1.4 3 0.969900 0.861 168 0.473914 
1.4 4 0.973816 0.898310 0551328 
1.4 5 0.973667 0.895852 0.612930 
1.4 6 0.973 669 0.895855 0.615346 

S/a. In the long-wavelength limit, as expected, the convergence is very fast and already 
the dipole term gives very good results. However, when the wavelength decreases and 
(or) the size of the spheres increases, higher-angular-momentum components must be 
taken into account in order to describe correctly both the Mie scattering from a single 
sphere and the multiple-scattering effects. 

After calculating independently the transmittanceand reflectivityofthe system using 
equations (14) we deduced the absorbance% = 1 - 5 - 92 which never exceeded 
Thisorder of magnitude givesan indication of the numerical accuracy in our calculation, 
since the absorbance of a system of dielectric particles having real dielectric constants is 
identically zero. This result was confirmed for all the cut-offs I,, = 1,2, . . . , 6  that we 
considered in the angular momentum expansions, indicating the inherent consistency 
of our formalism. 

3.2. Light scattering from a square lattice of gold particles on a sapphire substrate 

We applied our method to an optical transmission experiment performed in [8, 91 on a 
system of gold particles arranged on a square lattice on a sapphire substrate. Despite 
the small deviations from periodicity and spherical shape of the particles (their axial 
ratio was estimated to be 12-1.7) occurring in the actual experiment, we have assumed 
in our calculations spherical particles arranged on a perfectly periodic square lattice. 
The diameter of the gold particles in the experiment ranged from 20 to 35 nm, whereas 
the lattice constant was 50 nm. 

For the bulk relative dielectric function xe(w) of gold, we interpolate to the values 
measured by Johnson and Christy 1451. However, these values which contain both the 
Drude term and the interband absorption contribution must be corrected because of the 
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Figure+ Absorbance of normally incident light of wavelength A from a square lattice ol  Au 
spheresofradiusS = 15 "in(-) andS = 17 nm (. . . .), invacuum. Thelatticecunstant 
is equal to 50 nm. 

small size of the particles that we have. It is accepted that in small particles the electronic 
mean free path is shorter than in the bulk. Following several workers [6,7,22, U] ,  we 
incorporate this effect in the dielectric constant in an empirical manner as follows: 

x(w) = x e ( w )  + w2,/(w2 + i o s e i )  - wZ,/(w2 + iwr-l) 

r-1 = re' + v F s-1 

(28) 

(29) 

where mP is the plasma frequency, rB the relaxation time in the bulk metal and 

is the inverse relaxation time, corrected for the finite sire of the particle. VF is the Fermi 
velocity and S the radius of the spherical particle. Following [22,23], we use the values 
hw, = 8.99 eV, htgl = 0.027 eV and h V F  = 0.903 eV nm. The refractive index of 
sapphire shows little dispersion in the optical region but for simplicity we use the value 
ns = 1.77 throughout. For the ambient we taken = 1. 

The absorbance of the whole system (coating plus substrate) is due to the assembly 
of Au spheres. Thus, if we consider dielectric, instead of metallic, spheres the total 
absorbance must be identically zero. This is a way to check the accuracy in the calculation 
of total reflectivity and transmittance, given by equations (14), (15), (26) and (27). We 
performed this test by putting polystyrene spheres on the sapphire substrate and the 
total absorbance of the system was found to be 

We first consider a layer of gold spheres in isolation. The calculated absorbance for 
two sizes of spheres (within the range of measured radii) is shown in figure 4. The most 
strikingfeatureistheabsorptionpeakatabout512 nm, which becomesmorepronounced 
when the spheres are larger. This peak corresponds to the localized plasmon resonance 
of a single Au sphere as can be seen in figure 5 .  We confirmed that, within the range of 
wavelengths considered, the electrostatic limit constitutes a reasonably good approxi- 
mation which in turn justifies the method used by Vlieger and co-workers [19-241 in this 
instance. However, this is not generally true. Calculations on silver spheres of radii 
of the order of 40 nm show that multiple-scattering effects produce variations in the 
absorption curve (shifts in the absorption peaks), which depend strongly on the lattice 
constant. In all our calculations we used an angular momentum cut-off I,, = 4, which 
yields well converged results. 
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I f " = )  

Figure 5. Absorbance of light of wavelength h from a single Au sphere of radius S = 
15 nm: ~ , multiple treatment; . . . . ,electrostatic limit, calculated using equation (5). 

If we consider the substrate alone to be a homogeneous dielectric sapphire plate, the 
transmittance shows a periodic oscillatory behaviour as a function of the thickness of 
the slab with a period equal to A/2n, cos 0 as expected. Analogous oscillatory behaviour 
is found for the transmittance through the coated substrate, as well as the relative 
transmittance with respect to that of the bare substrate. In figure 6 we show the relative 
transmittance averaged over a period, together with the transmittance of the coating 
alone, as well as the experimental data in [8,9]. Clearly visible is the plasmon resonance 
peak that we calculate around A = 512nm. As we can see, the relative transmittance 
curve is shifted to higher transmittance values with respect to the transmittance of the 
coating alone. The calculated curve approaches the experimental curve for sphere radii 
ranged between 15 and 17 nm wbich corresponds well to the average size of particles 
measured in [8, 91. The main discrepancy with the experimental data is the position of 
thepeakwhichwe findat512nm,whereasexperimentallyitislocatedat around540 nm. 
This discrepancy is probably because the gold particles do not have exactly a spherical 
shape. Indeed, Vlieger and co-workers [22-241 have shown that, if instead of spherical 
particles one considers truncated spherical or oblate spheroidal particles, the plasmon 
resonance peak is shifted to longer wavelengths. These workers fitted the minimum in 
the experimental curve to their model and found good agreement assuming particles 
with a diameter of 26.8 MI and axial ratio equal to 1.21 (truncated spherical model) or 
with a diameter of 29.4 nm and axial ratio equal to 2.35 (oblate spheroidal model). An 
extensionofour method enabling us to calculate the scattering of electromagnetic waves 
by non-spherical particles is in progress. Further applications of our method will appear 
in a forthcoming publication [46]. 

4. Conclusion 

We developed a method for calculating the scattering of light from a periodic two- 
dimensional array of spherical particles adsorbed on a uniform dielectric slab and 
demonstrated the applicability of the formalism to real systems. Our first application of 
the method to the analysis of optical transmission data on a system of gold particles on 
a sapphire substrate gives a reasonably good account of the experimental situation. 
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Figure 6. Relative transmittance of asquare array 
of Ausphereson a sapphite substrate with respect 
to the transmittance of the bare substrate for nor- 
mally incident light of wavelength A (-). tor 
VariousspherersdiiS. The latticewnslant isequal 
to50nm.Thetransmittance(. . .  .)ofthccoating 
array of Au spheres alone and the experimental 
data(.)arealsoshown. 
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BIm(l'm'; /"m") = Y l ~ ( i ) Y ~ m , ( i ) Y l " - m " ( ~ )  df (A51 

(-46) fl = $ [ ( r  - m)(i  + m + I)]'" 

p$ 3 t[(/ + m)(i  - m + I)]'/'. ('47) 
The prime on the lattice sum in equation (A3) indicates that the term R, = 0 is to be 
omitted. We have (see, e.g., [42]) 

I 

2;:' = 0 

From (A8) it follows that 

52'1' 

52'2' 

1"';lm = 0 

I " ' : l m  = 0 

References 

unless 

or 

I + m even and I' + m' even 

I + moddand I' + m'odd. ( '48) 

unless 1 + m even and I' + m' even 

or 1 + m odd and 1' + m' odd 

unless I + m even and I' + m' odd 

or 1 + m odd and 1' + m' even. 
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